ΠΕΡΙΛΗΨΗ - Στην εργασία αυτή περιγράφεται η λειτουργία ενός ολοκληρωμένου κυκλώματος οδήγησης με τη βοήθεια του οποίου παλιμοδοτούνται τα ημιανάγωμα στοιχεία ενός τριφασικού αντιστροφέα. Με έναν μικροεξέργαστη, ο οποίος προγραμματίζεται ώστε οι παλμοί που εξέρχονται από αυτόν να είναι βάσει της μεθόδου PWM, αφού ενισχυθον από το οδηγητικό κύκλωμα παλιμοδοτούν τα στοιχεία του αντιστροφέα. Αυτό το οδηγητικό κύκλωμα παρέχει τη δυνατότητα προστασίας των IGBT έναντι υπερτάσεων και υπερερευμάτων. Εξηγείται ο τρόπος λειτουργίας του οδηγητικού κυκλώματος καθώς και ο υπολογισμός των συμπληρωματικών στοιχείων του ολοκληρωμένου, που συνδέονται στο οδηγητικό κύκλωμα, για την ασφαλέστερη λειτουργία του.

1. ΕΙΣΑΓΩΓΗ

Πριν περιγράψουμε τον τρόπο λειτουργίας του οδηγητικού κυκλώματος σκόπιμο είναι να αναφέρουμε μερικά προβλήματα που εμφανίζονται κατά την οδήγηση των IGBT. Τέσσερα είναι τα πιο σημαντικά προβλήματα:

- Η ταχύτητα μεταγωγής
- Απώλειες του IGBT λόγω της διόδου ελεύθερης διέλευσης
- Παρασιτική έναση του οδηγητικού κυκλώματος
- Προβλήματα από το κύκλωμα προδοσίας

Η ταχεία αλλαγή στην τάση συλλέκτη-εκπομπού μπορεί να προκαλέσει ρεύμα εκφόρτισης μέσω της παρασιτικής χωρητικότητας Miller, που υπάρχει ανάμεσα στην πύλη και στο συλλέκτη. Αυτά τα ρεύματα ρέουν μέσω της αντίστασης R1 στην πύλη, του οδηγητικού κυκλώματος και του εκπομπού, όπως φαίνεται στο Σχήμα 1. Έστω δημιουργείται πτώση τάσης στην αντίσταση R1. Όσο μεγαλύτερη είναι η ταχύτητα μεταγωγής (ένασης) τόσο μεγαλύτερο ρεύμα θα διέρχεται από την αντίσταση R1 και επομένως θα προκαλεί μεγαλύτερη πτώση τάσης, η οποία μπορεί να είναι ικανή να οδηγήσει σε ανεπιθύμητη έναση του IGBT. Για να λυθεί αυτό το πρόβλημα μπορούμε να μειώσουμε την ταχύτητα μετάβασης. Όμως, η ταχύτητα αυτή συνήθως είναι προκαθορισμένη. Επίσης, μπορούμε να μειώσουμε την τιμή της αντίστασης R1. Όταν όμως μειώσουμε την αντίσταση R1 το IGBT θα οδηγείται σε αγογή πιο γρήγορα και επομένως τα μεγέθη dV/dt και di/dt θα αυξάνονται. Αυτό είναι επικίνδυνο για τις διόδους ελεύθερης διέλευσης του IGBT.

Σχήμα 1. Κύκλωμα IGBT και οδηγητικό κύκλωμα.
Το δεύτερο πρόβλημα είναι οι απώλειες που προκαλούνται στο IGBT από την διόδο ελεύθερης διέλευσης. Κατά την σφάξη της διόδου παραμένει κάποιο φορτίο σε αυτή. Εάν η ταχύτητα μεταγωγής είναι πολύ μεγάλη αυξάνεται αυτό το φορτίο και εμφανίζεται αγχή ρεύματος, που ρέει προς το IGBT και προκαλεί απώλειες σε αυτό.

Το τρίτο πρόβλημα είναι η παραστική ένασθη του οδηγητικού κυκλώματος. Όταν η ταχύτητα μεταγωγής του IGBT είναι πολύ μεγάλη, το μέγεθος dV/dt στο IGBT μπορεί να διατρέχει τα εσωτερικά σήματα του οδηγητικού κυκλώματος και να ανάγει το IGBT χωρίς να υπάρχει παλύρωση.

To τέταρτο και τελευταίο βασικό πρόβλημα έχει να κάνει με την τροφοδοσία του οδηγητικού κυκλώματος. Εάν η τάση τροφοδοσίας έχει ανεπιτευχθεί αυξημένες, τότε μπορεί στην έξοδο το οδηγητικό κύκλωμα να δώσει ένα λανθασμένο σήμα ένασθης του IGBT.

Το πρώτο πρόβλημα που οφείλεται στην ταχύτητα μεταγωγής μπορεί να επιλυθεί με χρήση μιας μικρής αντίστασης R2 στην πύλη (Σχήμα 2), ενώ το πρόβλημα των απώλειων του IGBT λόγω της διόδου ελεύθερης διέλευσης και το πρόβλημα της παραστικής ένασθης μπορούν να επιλυθούν με μια μεγάλη αντίσταση R1 στην πύλη. Για να γίνει κάποιος συμβασμός μπορούμε να τοποθετήσουμε μια διόδο και μια αντίσταση R2 παράλληλα με την αντίσταση R1 στην πύλη του IGBT (Σχήμα 2). Η κάθοδος της διόδου θα συνδεθεί με το οδηγητικό κύκλωμα και έτσι το ρεύμα εκφόρτισης μπορεί να ακολουθήσει τη διαδρομή μέσω της μικρότερης αντίστασης R2 όπως φαίνεται στο σχήμα 2.

Σχήμα 2. Κύκλωμα IGBT και οδηγητικό κύκλωμα με πρόσθετη αντίσταση R2 και διόδο.

1. ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΚΥΚΛΩΜΑΤΟΣ ΟΔΗΓΗΣΗΣ HCPL-316J

Στην εργασία αυτή θα γίνει η περιγραφή του ολοκληρωμένου κυκλώματος HCPL-316J, το οποίο χρησιμοποιήθηκε σένα σύστημα ηλεκτρικής κίνησης.

Το HCPL-316J (Σχήμα 3) είναι ένα ολοκληρωμένο κύκλωμα οδήγησης, που περιλαμβάνει όλα τα απαραίτητα στοιχεία μέσα σε μια συσκευασία SO-16 για πλήρη και απομονωμένη οδήγηση της πύλης του IGBT με προστασία από σφάλματα και ανάδραση. Τα TTL (Transistor-Transistor-Logic) λογικά σήματα εισόδου επιτρέπουν την άμεση διασύνδεση με τον μικροελεγκτή και η οπτικά απομονωμένη βαθμίδα εξόδου οδηγεί το IGBT μέσω του οποίου διέρχεται ρεύμα έως 150A για τάση 1200V. Η βαθμίδα εξόδου του ολοκληρωμένου κυκλώματος διασφαλίζει την προστασία του IGBT από βλάβη κατά την εμπάρναση υπερενεργημένων, ενώ ο οπτικοελεγκτής εξασφαλίζει την πλήρη απομόνωση του σήματος εσφαλμένης λειτουργίας στην ανάδραση προς το μικροελεγκτή.

Δύο LED με δύο οπτικούς διαύλους και τα δύο ολοκληρωμένα κύκλωμα ενσωματώμενα στην ίδια συσκευασία SO-16 αποτελούν το κύκλωμα ελέγχου εισόδου και τη βαθμίδα ισχύς εξόδου, αντίστοιχα. Η πρόσω οπτική διαδρομή του σήματος , όπως δείχνει το LED1, μεταδίδει το σήμα ελέγχου πύλης. Η αντίστορη οπτική διαδρομή του σήματος, όπως δείχνει το LED2, μεταδίδει το σήμα εσφαλμένης λειτουργίας. Και οι δύο οπτικοί διαύλοι ελέγχονται από τα ολοκληρωμένα
κυκλώματα εισόδου και εξόδου, όπως φαίνεται στο Σχήμα 3. Κάτω από τις κανονικές συνθήκες λειτουργίας, το σήμα ελέγχου της πύλης ελέγχει άμεσα την πύλη του IGBT μέσω του απομονωμένου ολοκληρωμένου κυκλώματος ανίχνευσης DESAT (ακροδέκτης 14, Σχήμα 3). Το LED2 στην περίπτωση αυτή παραμένει απενεργοποιημένο και το σήμα σφάλματος στον καταχωρητή του ολοκληρωμένου κυκλώματος εισόδου θα είναι ανενεγρη. Όταν ανιχνεύεται στο IGBT σφάλμα από υπέρταση, ο ανιχνευτής DESAT αμέσως αρχίζει την ομιλή σβήση του IGBT με σκοπό την αποφυγή της καταστροφής του στοιχείου ισχύος από υπέρτασες. Συγχρόνως, αυτή η εσφαλμένη κατάσταση μεταδίδεται πίσω στον καταχωρητή του ολοκληρωμένου κυκλώματος εισόδου μέσω του LED2, όπου το σήμα σφάλματος απενεργοποιεί το σήμα ελέγχου της πύλης και το ενεργοποιημένο σήμα σφάλματος (χαμηλή κατάσταση) εκδίδει το μικροελέγχητη.

Σχήμα 3. Το εσωτερικό κύκλωμα του HCPL-316J.

Κατά την έννοια, το κύκλωμα υπότασης (UVLO) μπορεί να ανιχνεύει την ανεπαρκή τάση τροφοδοσίας της πύλης του IGBT με αποτέλεσμα στον ακροδέκτη εξόδου του HCPL-316J $V_{OUT}$ να εμφανίσει σήμα με χαμηλή κατάσταση. Οι συμβολισμοί και η περιγραφή των ακροδέκτων παρατίθενται στον παρακάτω πίνακα.

<table>
<thead>
<tr>
<th>Σήμαβολο</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{IN}$</td>
<td>Μη-αναστρέψιμη τάση οδήγησης της πύλης από τον μικροελέγχητη.</td>
</tr>
<tr>
<td>$V_{IN}$</td>
<td>Αναστρέψιμη τάση οδήγησης της πύλης από τον μικροελέγχητη.</td>
</tr>
<tr>
<td>$V_{CC}$</td>
<td>Τάση τροφοδοσίας 5V του προτεινόντος του οδηγητικού κυκλώματος</td>
</tr>
<tr>
<td>GND1</td>
<td>Γείωση</td>
</tr>
<tr>
<td>/RESET</td>
<td>Σήμα επαναφοράς της /FAULT. Η λογική είσοδος στην χαμηλή κατάσταση για λιγότερο από 0.1μs επαναφέρει αυτόχρονα την έξοδο της /FAULT στην υψηλή κατάσταση και ενεργοποιεί την $V_{IN}$. Το σήμα /RESET δεν επηρεάζεται από την UVLO. Επίσης, όσοπος η έξοδος της $V_{OUT}$ βρίσκεται στην υψηλή κατάσταση, το σήμα /RESET δεν μπορεί να την επηρεάσει.</td>
</tr>
<tr>
<td>/FAULT</td>
<td>Έξοδος /FAULT. Η /FAULT αλλάζει από την υψηλή κατάσταση στη χαμηλή μέσα σε 5μs όταν η τάση στον ακροδέκτη ξεπεράζει την εσωτερική τάση αναφοράς 7V. Η έξοδος της /FAULT παραμένει στη χαμηλή κατάσταση μέχρι ότε η /RESET να μεταβεί επίσης στην ίδια κατάσταση.</td>
</tr>
<tr>
<td>$V_{LED1+}$</td>
<td>Η άνοδος της LED1. Αυτός ο ακροδέκτης πρέπει να παραμένει ελέγχος για να εξασφαλίσουμε τα χαρακτηριστικά που μας δίνουν τα φιλλάδια των κατασκευαστών.</td>
</tr>
<tr>
<td>$V_{LED1}$</td>
<td>Η κάθοδος της LED1. Αυτός ο ακροδέκτης πρέπει να συνδέεται στη γείωση.</td>
</tr>
<tr>
<td>$V_{EE}$</td>
<td>Κοινή (εκπομπώς του IGBT) τάση αναφοράς.</td>
</tr>
<tr>
<td>$V_{LED2+}$</td>
<td>Η άνοδος της LED2. Αυτός ο ακροδέκτης πρέπει να παραμένει ελέγχος για να εξασφαλίσουμε τα χαρακτηριστικά που μας δίνουν τα φιλλάδια των κατασκευαστών (μόνο για δοκιμή επιτής σύζευξης).</td>
</tr>
<tr>
<td>DESAT</td>
<td>Διατήρηση εισόδου στην κατάσταση σφάλματος. Όταν η τάση αυτή ξεπεράζει την εσωτερική τάση αναφοράς 7V και το IGBT λειτουργεί, η έξοδος της /FAULT αλλάζει από τη λογική υψηλή κατάσταση στη χαμηλή μέσα σε 5μs.</td>
</tr>
</tbody>
</table>
Πίνακας 1. Περιγραφή των ακροδεκτών του HCPL-316J.

<table>
<thead>
<tr>
<th>V_{CC2}</th>
<th>Τάση τροφοδοσίας 18V του δευτερεύοντος του οδηγητικού κυκλώματος</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_c</td>
<td>Ο συλλέκτης του τρανζίστορ σε τριπλή συνδεσμολογία Darlington. Είναι συνδεδεμένος στο V_{CC2} άμεσα τη μέσο μιας αντίστασης για περιορισμό του ρεύματος ένασιστή του IGBT.</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Τάση εξόδου για οδήγηση της πύλης του IGBT</td>
</tr>
<tr>
<td>V_{EE}</td>
<td>Τάση αναφοράς</td>
</tr>
</tbody>
</table>

2. ΚΥΚΛΩΜΑΤΑ ΟΔΗΓΗΣΗΣ ΤΗΣ ΠΥΛΗΣ ΤΟΥ IGBT ΜΕ ΠΡΟΣΤΑΣΙΑ ΑΠΟ ΣΦΑΛΜΑΤΑ

Όπως είπαμε το HCPL-316J είναι ένα κύκλωμα οδήγησης πύλης και παρέχει προστασία από σφάλματα στην τάση V_{CE} του IGBT. Τα χαρακτηριστικά του όπως είσοδοι με δυνατότητα διαμόρφωσης, ανάγνωση υπέρτασης στο IGBT, προστασία από υπόταση (UVLO) και ομαλή σβήση του IGBT διασφαλίζουν μέγιστη προστασία του κυκλώματος.

Σχήμα 4. Το εσωτερικό κύκλωμα του HCPL-316J.

Ο ακροδέκτης DESAT του ολοκληρωμένου κυκλώματος παρακολουθεί την τάση V_{CE} του IGBT μέσω της διόδου D_{DESAT} (Σχήμα 6). Όταν η τάση στον ακροδέκτη αυτόν ξεπεράσει τα 7 volts, η τάση στην πύλη του IGBT V_{OUT} μείωνεται και το σήμα /FAULT πηγάδει στην χαμηλή κατάσταση, ειδοποίοντας τον μικροελεγκτή για συνθήκη σφάλματος.

Τα σήματα εξόδου του HCPL-316J V_{OUT} και /FAULT ελέγχονται από το συνδυασμό των V_{IN}, UVLO και αναγνώση του σφάλματος DESAT στο IGBT. Όπως δείχνει ο Πίνακας 2, το HCPL-316J μπορεί να διαμορφωθεί ως αντισταμένες η μη, χρησιμοποιώντας τις εισόδους V_{IN}, η V_{IN}, αντίσταση. Όταν είναι επιθυμητή η αντισταμένη διαμόρφωση, ο ακροδέκτης V_{IN} πρέπει να διατηρηθεί στην υψηλή κατάσταση και ο V_{IN} να δέχεται τα σήματα από τον ελεγκτή. Όταν όμως χρησιμοποιείται η μη αντισταμένη διαμόρφωση, ο ακροδέκτης V_{IN} πρέπει να είναι στην χαμηλή κατάσταση και ο ακροδέκτης V_{IN} να δέχεται τα σήματα από τον ελεγκτή. Επειδή το UVLO δεν είναι ενεργοστατικό (V_{CC2} - V_{E} > V_{UVLO}), η εξόδος στον ακροδέκτη V_{OUT} βρίσκεται στην υψηλή κατάσταση, επομένως δεν μπορεί να προστατεύει το IGBT και μένει σαν αναγνώση ο σφάλματος μόνο το DESAT (ακροδέκτης 14). Το UVLO χρειάζεται για την επαλήθευση της λειτουργίας ανάγνωσης υπέρτασης. Όταν η τάση V_{UVLO} θα είναι μεγαλύτερη από 12V, το DESAT θα λειτουργεί και θα προστατεύει το IGBT από σφάλματα. Επομένως, η ανάγνωση σφάλματος υπέρτασης DESAT πάνω στο IGBT και υπότασης UVLO του ολοκληρωμένου οδηγητικού κυκλώματος HCPL-316J λειτουργούν σε συνεργασία για εξασφάλιση της πλήρους προστασίας του IGBT. Στον Πίνακα 2 οι πρώτες τέσσερις σειρά δείχνουν σφάλμα στη λειτουργία του συστήματος, ενώ η τελευταία σειρά δείχνει μια κανονική λειτουργία (μόνιμη κατάσταση λειτουργίας).
Πίνακας 2. Διάφορες καταστάσεις λειτουργίας του συστήματος.

<table>
<thead>
<tr>
<th>VIN+</th>
<th>VIN-</th>
<th>UVLO (Vcc2 - VE)</th>
<th>Desat Condition Detected on Pin 14</th>
<th>Pin 6 (FAULT) Output</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>Active</td>
<td>X</td>
<td>X</td>
<td>Low</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td>Yes</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Low</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Low</td>
</tr>
<tr>
<td>X</td>
<td>High</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>Not Active</td>
<td>No</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>
3. ΑΝΙΧΝΕΥΣΗ ΚΑΙ ΠΡΟΣΤΑΣΙΑ ΑΠΟ ΣΦΑΛΜΑΤΑ

Το τμήμα ισχύος ενός τριφασικού αντιστροφέα είναι ευαίσθητο σε μερικά ειδή σφαλμάτων, περισσότερα από τα οποία οδηγούν στην καταστροφή των IGBT. Αυτά τα σφάλματα μπορούν να ομαδοποιηθούν σε τέσσερις κατηγορίες:

- φασικά ή πολλικά βραχυκυκλώματα
- σφάλματα στα σήματα ελέγχου λόγω παραβολών ή υπερβολικών λαθών
- συνθήκες υπερφόρτωσης προκαλούμενες από το φορτίο
- λανθασμένες επιλογές στοιχείων στην κατασκευή του κυκλώματος οδήγησης

Κάτω από οποιεσδήποτε από τις παραπάνω συνθήκες το ρεύμα διαμέσου του IGBT μπορεί να αυξηθεί θετικά, με αποτέλεσμα να προκληθούν απώλειες ισχύος και υπερθερμάνσεις στο IGBT. Το IGBT μπορεί να καταστραφεί, όταν το ρεύμα φορτίου προσεγγίζει την τιμή του ρεύματος καραμελού του ημιαγώγματος στοιχείου και την τάση συλλέκτη-εκπομπού υπερβεί την τάση καραμελού. Οι αυξανόμενες απώλειες ισχύος προκαλούν υπερθέρμανση του IGBT και μπορούν να προκαλέσουν την καταστροφή του. Για αποφυγή της καταστροφής του IGBT εφαρμόζεται στο οδηγητικό κύκλωμα ένα κύκλωμα προστασίας με σκοπό τη μείωση ή αποκόπη των υπερβολών κατά το σφάλμα. Το κύκλωμα αυτό εξασφαλίζει τη γρήγορη εντόπιση του σφάλματος και αποκόπη των υπερβολών. Τα χαρακτηριστικά που πρέπει να έχει αυτό το κύκλωμα είναι: υψηλή ταχύτητα, χαμηλό κόστος, χαμηλές απώλειες ισχύος και μικρό μέγεθος.

4. ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΤΟΥ ΧΡΟΝΙΣΜΟΥ ΤΟΥ ΟΔΗΓΗΤΙΚΟΥ ΚΥΚΛΩΜΑΤΟΣ

Το Σχήμα 5 απεικονίζει τις κυματομορφές εισόδου και εξόδου του οδηγητικού κυκλώματος κατά την κανονική λειτουργία, τις συνθήκες σφάλματος και τις συνθήκες επαναφοράς (reset).

Κατά την κανονική κατάσταση λειτουργίας (Σχήμα 6), η έξοδος \( V_{OUT} \) του HCPL-316J ελέγχεται από μια από τις εισόδους \( V_{IN} \). Η \( V_{IN} \) με την τάση συλλέκτη-εκπομπού του IGBT να ελέγχεται μέσω του \( D_{DESAT} \) (διόδος MUR1100). Η έξοδος /FAULT και η είσοδος /RESET είναι στην υψηλή κατάσταση.

Όταν η τάση στον ακροδέκτη DESAT ξεπεράσει τα 7V ενώ το IGBT λειτουργεί (Σχήμα 6), η \( V_{OUT} \) αρχάγει περιορίζει στη χαμηλή κατάσταση για την υπολογιστήριο του IGBT και αποφεύγει μεγάλες επαναφορές τάσεων λόγω του \( dI/dt \). Επίσης ενεργοποιείται το επαφικό κανάλι που μεταφέρει την έξοδο /FAULT στη χαμηλή κατάσταση με σκοπό την ειδοποίηση του μικροελεγκτή για εφαρμογή συνδεθήκη. Για να επαναφέρουμε το /FAULT στην υψηλή κατάσταση θα πρέπει ο μικροελεγκτής να επαναφέρει το /RESET στη χαμηλή κατάσταση.

Σχήμα 5. Κυματομορφές εισόδου και εξόδου του οδηγητικού κυκλώματος.
Όταν ανιχνεύεται η εμφάνιση τάσης μεταξύ συλλέκτη και εκπομπού μεγαλύτερης από την τάση κορεσμού (desaturation fault), ενεργοποιείται η αντίσταση $R_{\text{pull-down}}$ (Σχήμα 7) στην εξόδου του HCPL-316J και οδηγεί σε κατάσταση αποκοπής το IGBT. Αυτή η αντίσταση εκφορτίζει αργά την πύλη του IGBT για να αποφεύγει τοις ταχείς αλλαγές στο ρεύμα του συλλέκτη, που μπορεί να προκαλέσει καταστροφικές αρχές τάσεως λόγω της επαναλήψης των συνδέσεων.

Το κύκλωμα ανίχνευσης σφάλματος θα πρέπει να παρακολουθεί για μικρό χρονικό διάστημα μέχρι να ξαναμεταβεί στην κατάσταση ακατάλληλης το IGBT για να κατέβει η τάση συλλέκτη-εκπομπού κάτω από την τάση κατωφλίου. Αυτό το χρονικό διάστημα, εκφορτωμένο χρόνος αποκατάστασης $t_{\text{BLANK}}$ (blanking time), ελέγχεται από το εξωτερικό ρεύμα DESAT, την τάση κατωφλίου και τον εξωτερικό πυκνότητα DESAT (Σχήμα 7). Το ονομαστικό χρονικό διάστημα υπολογίζεται βάσει του εξωτερικού πυκνοτήτα $C_{\text{BLANK}}$, $I_{\text{FAULT}}$ τάση κατωφλίου ($V_{\text{DESAT}}$) και ρεύμα DESAT $(I_{\text{CHG}})$. Ο χρόνος $t_{\text{BLANK}}$ υπολογίζεται από την τύπο

$$t_{\text{BLANK}} = \frac{C_{\text{BLANK}} \cdot V_{\text{DESAT}}}{I_{\text{CHG}}}$$

Σχήμα 6. Διασύνδεση του οδηγητικού κυκλώματος με το κύκλωμα ελέγχου και το IGBT με τη βοήθεια των συμπληρωματικών στοιχείων.

Ο ονομαστικός χρόνος $t_{\text{BLANK}}$ με προτεινόμενο πυκνοτήτα 100pF είναι:

$$t_{\text{BLANK}} = \frac{100 \, [\text{pF}] \cdot [7\, \text{V}]}{250 \, [\mu\text{A}]} = 2.8 \, \mu\text{sec}$$

Η τιμή του πυκνοτήτα μπορεί να επιλεγεί έτσι ώστε να ρυθμίσει κατάλληλα ο χρόνος αποκατάστασης, αν και δεν συνεπάγεται πυκνοτήτα με τιμή λιγότερη από 100pF. Αυτή η ονομαστική τιμή του χρόνου αποκατάστασης αντιπροσωπεύει επίσης το μέγιστο χρόνο απόκρισης του HCPL-316J στη σφάλμα DESAT. Όταν δύο IGBT του ίδιου σκέλους (συνδεδεμένοι στην ίδια φάση) βρίσκονται στην κατάσταση βραχυκύκλωματος και παράλληλα δίσευμενο παλμό σε ένα από τα δύο IGBT, τότε σε 3μs μέσα του DESAT σταματά το οδηγητικό κύκλωμα να δίνει παλμούς ένανσης στα IGBT.

Όταν στην κανονική κατάσταση λειτουργίας κάποιο IGBT βρίσκεται σε κατάσταση αγωγής και εμφανιστεί βραχυκύκλωμα σε κάποια από τα σκέλη του 3/φασικού αντιστροφέα, τότε ο χρόνος ανταπόκρισης $t_{\text{BLANK}}$ θα είναι μικρότερος εξαιτίας της παραστικής χωρητικότητας της διάδοσης $D_{\text{DESAT}}$. 
Σχήμα 7. Καμπύλες των ρευμάτων $I_C$ του IGBT συναρτήσει της τάσεως συλλέκτη-εκκόμπου.

Στο Σχήμα 7 φαίνονται οι καμπύλες των ρευμάτων $I_C$ του IGBT συναρτήσει της τάσεως συλλέκτη-εκκόμπου με παράμετρο το πλάτος του παλμού ένωσης. Όταν η τάση $V_{CC2}$ είναι ανεπαρκής η UVLO απενεργοποιεί την έξοδο του HCPL-316J. Για ονομαστική τάση συλλέκτη-εκκόμπου $V_{CE}$ απαιτείται τάση πύλης 15V για να βρεθεί το IGBT σε κατάσταση ανοιχτός. Στις τάσεις πύλης τυπικά κάτω από 13V η τάση κορεσμού αυξάνεται πολύ, εδώ και στα υψηλά ρεύματα. Σε πολύ χαμηλές τάσεις (κάτω των 10V) το IGBT λειτουργεί στη γραμμική περιοχή με αποτέλεσμα η αντίσταση του IGBT να γίνει μεγάλη με αποτέλεσμα το ημιαγώγιο στοιχείο να υπερθερμαίνεται γρήγορα. Όταν η τάση $V_{CC2}$ είναι πάνω από τη θετική τάση αναφοράς του UVLO, η έξοδος του οδηγητικού κυκλώματος ανταποκρίνεται κανονικά στα σήματα εισόδου. Το UVLO και το DESAT αποτελούν ολοκληρωμένο σύστημα προστασίας από τις μεταβολές της τάσης $V_{CC2}$.

Στο κεφάλαιο αυτό αναφερόμαστε στην αντίσταση $R_{pull-down}$ η οποία είναι μια αντίσταση που χρησιμεύει για την εκφόρτιση της χειροτοκίας της πύλης του IGBT. Η τάση $V_{CC2}$ εφαρμόζεται στο συγκριτή του οποίου το σήμα περνάει διαμέσου των τριών τρανζίστορ (εσωτερικά του οδηγητικού κυκλώματος) με αποτέλεσμα στην έξοδο να είχε $V_{OUT} = V_{CC2} - 3\times(V_{BE})$. Όταν στην έξοδο δεν υπάρχει σήμα για την πύλη του IGBT τότε θα πρέπει το IGBT να μεταβεί σε κατάσταση αποκοπής και έτσι η αντίσταση $R_{pull-down}$ εκφροτίζει την πύλη του IGBT. Επιπλέον το MOSFET που υπάρχει στο εσωτερικό του οδηγητικού κυκλώματος έχει πολύ μεγάλη αντίσταση για να εκτελεστεί αυτή τη διαδικασία, στην έξοδο του οδηγητικού κυκλώματος τοποθετείται η $R_{pull-down}$. Η τιμή της υπολογίζεται από τον τύπο:

$$R_{pull-down} = \frac{V_{CC2} - 3\times V_{BE}}{650 \, \mu A}$$

όπου τα 650μA είναι το ελάχιστο ρεύμα λειτουργίας του εσωτερικού κυκλώματος.

Η διόδος ελεύθερης διέλευσης, που είναι συνδεδεμένη στο IGBT μπορεί να έχει μεγάλη πτώση τάσης με αποτέλεσμα να εμφανιστεί υψηλή πρόσω πόλη τάση στη διόδο $D_{desat}$ και επομένως μπορεί να περάσει μεγάλο ρεύμα από αυτήν και να την καταστρέψει. Για να περιορίσουμε αυτό το ρεύμα και να προστατεύουμε τη διόδο $D_{desat}$ συνδέουμε μια αντίσταση 100Ω στη σειρά με αυτήν. Πρέπει να σημειωθεί ότι η προσταθεμένη αντίσταση δεν αλλάζει το χρόνο ανταπόκρισης του οδηγητικού κυκλώματος και την τάση κατεφλοίου $V_{desat}$.
5. ΠΡΑΚΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ

Το οδηγητικό κύκλωμα που περιγράφει εφαρμόστηκε στο ηλεκτρικό κινητήριο σύστημα του Σχήματος 9. Το ηλεκτρικό κινητήριο σύστημα αποτελείται από έναν ασύγχρονο κινητήρα ισχύος 120W, από έναν 3/φασικό αντιστροφό με IGBT, από μια ανορθωτική μονοφασική γέφυρα με τον πυκνωτή για την εξουδέτευση της τάσεως, από έναν μικροεπεξεργαστή C164CI της SIEMENS και τα οδηγητικά κυκλώματα HCPL-316J ένα για κάθε IGBT.

Σχήμα 8. Ηλεκτρικό κινητήριο σύστημα.

Από τις μετρήσεις που έγιναν στο εργαστήριο πάρθηκαν οι κυματομορφές του ρεύματος του κινητήρα και οι παλμοί έναωσης του IGBT.

Σχήμα 9. Κυματομορφή του ρεύματος του κινητήρα.
Σχήμα 10. Παλμοί ένανσης για τα IGBT του ίδιου σκέλους του αντιστροφέα.

Στο Σχήμα 10 φαίνεται ότι η κιματομορφή του ρεύματος πληρώνει την ημιτονωδή μορφή. Στο Σχήμα 11 φαίνονται οι παλμοί προς τα IGBT του ίδιου κλάδου του αντιστροφέα. Ο πρώτος είναι ο παλμός για το IGBT της επάνω ομάδας και ο άλλος για το IGBT της κάτω ομάδας.

6. ΣΥΜΠΕΡΑΣΜΑΤΑ

Από την εφαρμογή του οδηγητικού κυκλώματος στο ηλεκτρικό κινητήριο σύστημα διαπιστώθηκε ότι το οδηγητικό κύκλωμα προστατεύει το IGBT και σε περιπτώσεις σφαλμάτων το όλο σύστημα επίθετο εκτός λειτουργίας. Προβλήματα μπορούν να υπάρξουν αν από το λογισμικό του μικροεπεξεργαστή δεν υπάρξει αρκετός "νεκρός χρόνος" (dead time) στις παλμοδοτήσεις μετά τη σβήση του ενός IGBT και την παλμοδότηση του άλλου IGBT του ίδιου σκέλους.

Σημείωση: Η εργασία αυτή έγινε κατά τη διάρκεια της πρακτικής άσκησης του κ. Δ. Εβλίδη στην εταιρία Infineon Technologies στο Μόναχο. Ευχαριστώμε το Δρ. κ. Κ. Κανέλι και το Διπλ. Μηχ. κ. Η. Αμμαν για τη βοήθειά τους.

7. ΑΝΑΦΟΡΕΣ