ABSTRACT: The 5th Hellenic Conference on Geotechnical and Geoenvironmental Engineering, which took place at Xanthi, Thrace, between May 31st and June 2nd, 2006, included a special session on geotechnical engineering education, research and professional practice in the countries of South-East Europe. This introduction gives some background on the organization of this session and highlights common elements as well as the variety that emerged from the national reports.

1. CHRONOLOGY

In March 2005, the Hellenic Society of Soil Mechanics and Foundation Engineering (SSMFE) announced to nine Societies in Southeastern Europe the 5th Hellenic Conference on Geotechnical and Geoenvironmental Engineering, scheduled to take place at Xanthi, Thrace, between May 31st and June 2nd, 2006. At the same time, the Hellenic SSMFE proposed the organization of an English-speaking session devoted to geotechnical engineering education, research and professional practice and invited one delegate from each Society to give a presentation for his or her country.

The invited Societies were the ones then listed at the web page of the International Society of Soil Mechanics and Geotechnical Engineering (www.issmge.org) for South-East Europe, namely Albania, Bulgaria, Croatia, the Former Yugoslav Republic of Macedonia (FYROM), Romania, Serbia & Montenegro, Slovenia and Turkey, as well as the Association of Civil Engineers of Cyprus. In July 2005, after several Societies having had responded to the invitation, the Hellenic SSMFE sent out format guidelines for the written national reports and a list of suggested topics, which included information on (i) geotechnical courses at the undergraduate level, (ii) whether undergraduate civil engineering curricula offer the opportunity for a geotechnical specialization at the undergraduate level, (iii) geotechnical courses at the postgraduate level and (iv) any existing programs at the level of Master's of Science for Geotechnical Engineering and related topics. For the section on practice of Geotechnical Engineering, possible topics included information on specialized geotechnical companies and the relevant legal framework.

By the time the conference took place, the Hellenic SSMFE had received written reports by the Societies of: Albania, Bulgaria, Croatia, Cyprus, Greece, Romania, Serbia & Montenegro and Slovenia. These national reports were presented in a dedicated session titled “Geotechnical Engineering Education and Practice in the Countries of South-East Europe”, which took place on June 1st, 2006, and are included in this supplementary conference volume. The remainder of this introduction summarizes briefly some points from the national reports.
2. COMPARISON OF THE NATIONAL REPORTS

2.1 Structure and duration of the undergraduate studies

Croatia and Romania have already made the transition to the tiered system specified in the so-called "Bologna process". Croatia elected a 3-year first cycle followed by a 2-year second cycle (3+2), whereas Romania opted for a 4-year first cycle and a 1.5-year second cycle (4+1.5). Serbia & Montenegro and Slovenia have future plans for transferring to a two-tier program and are likely to adopt (4+1) and (3+2) systems, respectively. As a result of the changes, the total duration of the undergraduate studies is in some countries in flux. In countries where no changes are planned or in place, such as Albania, Bulgaria, Greece, Serbia & Montenegro, the duration of the undergraduate studies is 5 years. Cyprus has a shorter undergraduate program of 4 years. In Croatia and Romania, students who will graduate with the old, "pre-Bologna" system will have completed the undergraduate program in 4.5 and 5 years, respectively.

2.2 Geotechnical specialization at the undergraduate level

The geotechnical specialization at the undergraduate level is organized in a variety of ways. The Albanian Geotechnical Society in collaboration with the Polytechnic University of Tirana organizes specialized geotechnical short courses for a joint audience of 5th-year civil engineering students and practicing civil engineers. In Croatia and Romania, the geotechnical specialization is deferred to the second cycle of the two-tier program. In Greece, the geotechnical specialization is part of the integrated 5-year program. Finally, Slovenia and Serbia & Montenegro have plans to develop geotechnical specialization in the future, as part of the transition to the two-tier system.

2.3 Postgraduate Geotechnics

The comparison of the geotechnical programs shows that the widest variety exists at the postgraduate level. In Bulgaria, civil engineering students graduating from the 5-year program are awarded automatically a Master's of Science (MSc) Degree in Civil Engineering. A Master's in Geotechnical Engineering requires an extra 6th year (5+1). In Croatia, a civil engineer graduating from the two-cycle program can be awarded an MSc in Civil Engineering with a geotechnical specialization (3+2), while a Doctor of Philosophy (PhD) Degree requires three additional years, which include structured advanced coursework (3+2+3). In Greece, civil engineering graduates can complete a Postgraduate Specialization Diploma in Geotechnical Engineering, which has a year-long duration (5+1), and can further pursue a PhD Degree, which typically requires some additional advanced coursework. Like Bulgaria and Greece, students in Romania still following the "pre-Bologna" program can complete a year-long program of advanced studies in Geotechnical Engineering (5+1), but starting in the academic year 2009-2010 students will be awarded an MSc Degree by completing advanced coursework in the second cycle (4+1.5). In Serbia & Montenegro, an MSc with geotechnical specialization has a duration of two years (5+2). Finally in Slovenia, geotechnical courses are offered as part of postgraduate studies. All postgraduate students are supported by grants while pursuing either MSc (2.5 years) or PhD (4.5 years) Degrees.

2.4 Geotechnical practice

Significant differences also emerged in the practice of Geotechnical Engineering. This section highlights some of the interesting particulars in the different countries. In Croatia, there is a long tradition of industry-academia collaboration that came about from the active involvement in both of the founding father of Geotechnics in Croatia. Moreover, Croatia has the distinction that some practicing engineers have graduated from a (dedicated) Faculty of Geotechnical Engineering. The report for Cyprus stressed the significant geotechnical activity within the public sector. The professional landscape in Romania stands out due to its apparent large number of national geotechnical regulations. The reports for Greece and Serbia & Montenegro noted the occasional friction between geologists and civil engineers over professional rights, while in Slovenia practitioners in the field of Geotechnical Engineering are graduates from Civil Engineering, Mining and Geotechnology or Geology.